
IDE for Regular Games

(IDE dla Regular Games)

Jakub Cieśluk

Praca inżynierska

Promotor: mgr inż. Radosław Miernik

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

19 stycznia 2024

Abstract

High-quality tooling is crucial for programming language adoption. Developers are
used to conveniences such as auto-completion or syntax highlighting. In this work,
we improve the tooling for the Regular Games language, a game description language
for General Game Playing, developed at the University of Wrocław. Specifically, we
present an implementation of an Integrated Development Environment that runs en-
tirely in a browser. We also address the significance of the Language Server Protocol
(LSP) in standardizing the development of language intelligence.

We extend the previous Regular Games parser with error recovery capability
and describe a way to collect semantic data from the Abstract Syntax Tree. This
work implements both the language server, which is responsible for providing LSP
features, and the language client, which serves as an intermediary for communication
with a code editor.

Solidne narzędzia wspierające programistów są bardzo ważne dla adopcji języka
programowania. Programiści są przyzwyczajeni do udogodnień, takich jak automa-
tyczne podpowiedzi lub kolorowanie składni. W tej pracy zajmujemy się ulepszeniem
narzędzi dostępnych dla języka Regular Games. Język ten powstał na Uniwersyte-
cie Wrocławskim i służy do opisu reguł gier w kontekście General Game Playing.
W szczególności przedstawiamy implementację zintegrowanego środowiska programi-
stycznego, które działa całkowicie w przeglądarce. Zajmujemy się również znaczeniem
Language Server Protocol (LSP) w standaryzacji rozwoju inteligencji językowej.

Rozszerzamy poprzedni parser Regular Games o możliwość tolerowania błędów i
opisujemy sposób zbierania danych semantycznych z abstrakcyjnego drzewa składni.
Niniejsza praca implementuje zarówno serwer języka, który jest odpowiedzialny za
dostarczanie funkcji LSP, jak i klienta języka, który służy jako pośrednik do komu-
nikacji z edytorem kodu.

Contents

1 Introduction 7

1.1 Introducing Language Server Protocol 7

1.2 Language server . 8

1.3 Regular Games Language . 8

2 Related work 11

2.1 Code editors . 11

2.2 Tree-sitter . 12

2.3 Advanced language server implementantations 12

3 Implementation 13

3.1 Methodology . 13

3.2 Architecture . 14

3.3 Code editor . 15

4 Language server 17

4.1 Parsing . 17

4.2 Collecting semantic information . 19

4.3 Language server . 21

4.3.1 Goto definition . 21

4.3.2 Show references . 22

4.3.3 Document highlight . 22

4.3.4 Document symbols . 22

4.3.5 Rename . 22

5

6 CONTENTS

4.3.6 Hover . 23

4.3.7 Semantic highlighting . 24

4.3.8 Completion . 25

4.3.9 Code actions . 25

4.4 Testing . 26

5 User Manual 27

6 Summary and Further Development 31

6.1 Conclusion . 31

6.2 Further work . 32

Bibliography 33

Chapter 1

Introduction

Integrated Development Environments (IDEs) are crucial tools in software develop-
ment, significantly enhancing programmers’ efficiency. An IDE typically combines
various components and functionalities that programmers need, creating a unified
environment for writing and debugging code.

The main part of an IDE is a code editor, where developers write their software.
An editor should support features like syntax highlighting, auto-completion, and
diagnostics (error squiggles).

IDEs often cooperate with a compiler or an interpreter to allow their users to run
or test their code within the development environment[1]. They also provide tools to
navigate the codebase, e.g., jumping to a function definition and its references, or a
workspace-wide symbol search. Modern IDEs, like Visual Studio Code1, come with
an integrated terminal and version control tools.

The choice of an IDE depends on its support for a chosen programming language
and the developer’s personal preferences. Options vary from robust IDEs equipped
with extensive toolkits to basic text editors enhanced with essential plugins.

1.1 Introducing Language Server Protocol

Having good IDE support is very important for solid language adoption. Poor tooling
can outweigh the many advantages of the language and determine its popularity. For
these reasons working on providing a good programmer experience is very important
for teams involved in developing programming languages.

Previously, this work could be very tedious. Every editor had a different set
of capabilities and the entire analysis had to be done almost from scratch for each
editor since there was no common way to integrate with them.

1https://code.visualstudio.com/

7

https://code.visualstudio.com/

8 CHAPTER 1. INTRODUCTION

Language Server Protocol2 (LSP), designed by Microsoft, was created to over-
come these issues and streamline the development of tooling[2, 3, 4]. It provides a
unified way for communicating between an editor and a language server, which is a
provider of all IDE features like syntax highlighting, navigation, and completions.
These days almost every mainstream code editor supports LSP, including Atom,
Eclipse, Emacs, Neovim, Sublime Text, and Visual Studio Code.

1.2 Language server

At first, a compiler, or an interpreter, may seem to be a good candidate for a language
server base. However, they serve a different function in the ecosystem, and their
design principles are not suited for other roles. While both a language server and a
compiler perform analysis of code, they are optimized for different use cases.

Differences begin already at the parsing stage[5]. Compilers typically follow a
single-pass or multi-pass approach, where they parse the whole file at once, optionally
tokenizing its contents first. Language servers prefer incremental parsing since they
must react to every change made in the code in real-time.

While the user writes their program, it is almost always incorrect, but the server
should still be able to process it and provide as many helpful diagnostics and deco-
rations as possible. For this reason, its parser should also be fault-tolerant and be
able to handle erroneous code[6].

1.3 Regular Games Language

Regular Games (RG) language was created at the University of Wrocław by Marek
Szykuła, Radosław Miernik, and Jakub Kowalski. It is a successor of another lan-
guage, Regular Board Games[7], designed at the same university by Jakub Kowalski,
Marek Szykuła, and their team.

Both languages were designed to describe games in General Game Playing[8]
(GGP), a field of artificial intelligence, where programs can successfully play different
kinds of games. Traditionally, agents are written directly for a single game and have
no idea how to play any other. They depend on specialized algorithms and heuristics
which had to be previously researched. On the other hand, in GGP, programs have
to be able to play any sort of game, without knowing its rules beforehand. For that,
we need a formal way of defining the game rules, called game description language.

Two remarkable GGP languages are GDL[9] and Ludii[10]. GDL encodes the
game rules as a set of logical clauses. It is general enough to describe any determin-
istic n-person game with simultaneous moves and perfect information.

2https://microsoft.github.io/language-server-protocol/

https://microsoft.github.io/language-server-protocol/

1.3. REGULAR GAMES LANGUAGE 9

Ludii builds upon the principles of GDL but goes beyond being just a language.
It provides a whole platform for playing and analyzing games. However, neither of
these two has an IDE.

RG language is characterized by its readability to the programmer and is easy
to parse and analyze. It has a clear but expressive syntax that naturally resembles
the game rules set. Like most programming languages, it contains types, constants,
and mutable variables. The game is represented as a finite automaton in the form
of a graph with parametrized edges.

Types (Figure 1.1) in RG can take two forms. A type can be either a set of
identifiers or an arrow type. Sets are used to represent all possible values of a given
type like allowed positions on a game board or different kinds of pieces. Arrow types
work similarly to function types in other languages – each of them has a parameter
type and a result type. There are no tuple types in the Regular Games language,
but arrow types can represent multi-parameter functions.

Figure 1.1: Type definitions

Constants (Figure 1.2) are immutable constructs that are mostly used for defin-
ing moves available at a given position on a game board. A constant consists of an
identifier, a type annotation, and a value. A value can be a single element or a list of
value entries. Each value entry serves as a mapping from an identifier to a value.
This identifier is optional, which enables defining default mappings. Each map has
to have exactly one default value. Values in the form of a list of value entries can be
understood as functions, possibly of a higher order.

Figure 1.2: Constants definitions

10 CHAPTER 1. INTRODUCTION

Variables (Figure 1.3) look similar to constants, they also have an identifier, a
type annotation, and an initial value. However, variables are mutable, so they are
used to store the current state of the game. Usually, they contain data about the
current player or the positions of pieces on the game board.

Figure 1.3: Variable definitions

Edges (Figure 1.4) make up a majority of all games written in the Regular Games
Language. Each edge consists of two vertices and a label. A vertex, in addition to
its name, can also have associated values that it passes on to its neighbors.

Labels define the transitions between given vertices. It can be a comparison that
dictates whether the transition is allowed, an assignment that changes the variable’s
value, a tag used to distinguish moves, and a reachability check between two different
vertices in a graph.

Figure 1.4: Edges

The Regular Games language also defines pragmas. They serve as hints for
the compiler. Although they are analyzed and included in the abstract syntax tree
(AST), they have no influence on the semantics of a game.

Figure 1.5: Pragmas

Chapter 2

Related work

Almost every commercially used programming language has its implementation of a
language server, and the vast majority of them are open source. Examples include
elixir-ls1 for Elixir and rust-analyzer2 for Rust.

What separates them from the language server created in this work is their close
connection with the compiler and build tool. Knowledge about files containing tests
allows users to run them directly from the editor. Using these language servers,
users can navigate to files that are not part of their projects, such as dependency
sources. Since the RG language is based on single-file sources, these features have
no counterpart in the presented IDE.

2.1 Code editors

There are many code editors available for developers, but only a few of them can
run in a browser[11]. Previously the IDE for Regular Games was using CodeMirror3,
which is also embedded in Scastie4, an online editor for Scala. We replaced it with
Monaco as the latter provides better LSP support and documentation. Monaco is
also used on the CodinGame5 website, an educational platform for developing game-
playing bots.

lsp-web-demo6 is a great minimalistic demonstration of how to build a lan-
guage server in Rust. Its repository contains also an example of building a server
with WebAssembly[12] and connecting it to a client. The project implements a min-
imalistic language server for JavaScript. Instead of writing everything from scratch,
it uses Tree-sitter for parsing and extracting semantic information.

1https://github.com/elixir-lsp/elixir-ls
2https://rust-analyzer.github.io/
3https://codemirror.net/
4https://scastie.scala-lang.org/
5https://www.codingame.com/home
6https://github.com/silvanshade/tower-lsp-web-demo

11

https://github.com/elixir-lsp/elixir-ls
https://rust-analyzer.github.io/
https://codemirror.net/
https://scastie.scala-lang.org/
https://www.codingame.com/home
https://github.com/silvanshade/tower-lsp-web-demo

12 CHAPTER 2. RELATED WORK

2.2 Tree-sitter

Tree-sitter7, a groundbreaking parsing library, has emerged as a powerful tool in the
field of language processing and code analysis. GitHub developed it for the Atom
editor but is now also commonly used in Emacs, Neovim, and Helix.

Tree-sitter was designed directly for the needs of IDEs. One of its key features is
incremental parsing, which allows it to not rebuild the whole abstract syntax tree on
every keystroke, but only update affected nodes[13, 14, 15]. It is also able to provide
useful error messages and produce a correct AST in their presence. Tree-sitter is
language-agnostic, which makes it a reasonable choice for tools that aim to support
multiple languages.

Editors like Neovim use trees generated by Tree-sitter not only for syntax high-
lighting but also for navigation and refactorings using queries. Parsers are written
for plenty of languages and library bindings are available in JavaScript, Python,
and Rust, among others. Tree-sitter also provides bindings for WebAssembly, which
makes it a perfect tool for a code editor that runs entirely in a browser.

2.3 Advanced language server implementantations

The Metals project8, implementation of Language Server Protocol for Scala, is ar-
guably one of the more complex language servers. It supports multiple versions for
both Scala 2 and Scala 3, together with multiple build tools including sbt, mill,
Maven, and scala-cli. To cooperate fully with them, Metals uses Build Server
Protocol (BSP). This channel of communication is used to get data about whole
modules and their compilation state. BSP informs the language server about project
dependency sources, test classes, and errors encountered during compilation.

For navigation and renaming, Metals uses SemanticDB[16], a data model storing
semantic information about symbols defined and referenced in each file. SemanticDB
files are generated by the compiler and saved on the disk to be later consumed by
tools like language servers. Although they are very useful, finding all usages of a
symbol using them is not fast enough. Similarly, a language server doesn’t need all
the information about dependency sources. Because of this, Metals implements its
set of indexers, that collect only definition locations of top-level symbols.

Features that operate in the scope of a single file, like auto-completion or syntax
highlighting use Presentation Compiler, which is a faster, asynchronous version of
the Scala Compiler, but is not able to perform any phases of the latter that come
after typechecking. It provides Metals with completions, symbols available at a given
position, and typed abstract syntax trees.

7https://tree-sitter.github.io/tree-sitter/
8https://scalameta.org/metals/

https://tree-sitter.github.io/tree-sitter/
https://scalameta.org/metals/

Chapter 3

Implementation

3.1 Methodology

The existing RG interpreter is written in Rust, which is also the chosen language for
developing the language server. The parser utilizes nom1, a parser combinator library.
We enhance it with the nom-locate2 crate (crates in Rust are used for sharing code
between projects), which equips us with an input type preserving the locations of
tokens within the source file.

The language server is built on top of the tower-lsp3 library. Then, we build
both interpreter and language server WASM modules with wasm-pack4 and wasm-bindgen5.

The website is available at https://radekmie.dev/rg/. It is written using
TypeScript and React. As a code editor, we use the aforementioned Monaco6.
Thanks to monaco-vscode-api7 we can use Visual Studio Code API and register
LSP features easily. For running the project we use parcel8 build tool. The project
is published automatically with GitHub Actions9.

1https://github.com/rust-bakery/nom
2https://github.com/fflorent/nom_locate
3https://github.com/ebkalderon/tower-lsp
4https://github.com/rustwasm/wasm-pack
5https://github.com/rustwasm/wasm-bindgen
6https://microsoft.github.io/monaco-editor/
7https://github.com/CodinGame/monaco-vscode-api
8https://parceljs.org/
9https://github.com/features/actions

13

https://radekmie.dev/rg/
https://github.com/rust-bakery/nom
https://github.com/fflorent/nom_locate
https://github.com/ebkalderon/tower-lsp
https://github.com/rustwasm/wasm-pack
https://github.com/rustwasm/wasm-bindgen
https://microsoft.github.io/monaco-editor/
https://github.com/CodinGame/monaco-vscode-api
https://parceljs.org/
https://github.com/features/actions

14 CHAPTER 3. IMPLEMENTATION

3.2 Architecture

This project implements both ends of the Language Server Protocol i.e., the client
and the server. When a user enters the website, an editor is loaded and all services
are initialized. The client and the server are started and communication between
them begins.

We take advantage of using multiple web workers for better responsiveness and
overall user experience. Writing happens in the main thread, so it is not interrupted
by calculations from the interpreter and the language server. Both of them also run
in separate workers, this way LSP features are not blocked by expensive calculations
connected with generating optimized code. This is a common approach, taken by
most IDEs.

As a transport layer, LSP uses JSON-RPC (Remote Procedure Call). The client
begins a connection with the server by sending initialize request. The request’s
parameters contain information about the client, including its capabilities. They
define which LSP features are supported on the editor’s end.

The server then responds with its own set of capabilities, which lists supported
programming languages, describes implemented LSP endpoints, and informs how
should synchronization proceed. In the case of the Regular Games language server,
after opening a new file or changing its contents, a notification with the whole file’s
contents is sent.

The language server then parses the code and collects semantic data from the
AST created in the process. Any errors detected during this phase are published
to the client as notification publishDiagnostics. They can inform the user about
syntax errors or unknown identifiers.

Most LSP methods require some interaction from the user. After they are
invoked in the editor, the client sends the appropriate request and the server processes
it and responds with a result. It is then translated to data structures understood by
Visual Studio Code API. The whole communication process happens asynchronously.

3.3. CODE EDITOR 15

3.3 Code editor

The website view is split into two main parts. The left side is a standard editor
in which the user writes its code (Figure 3.1). It supports four languages: Regular
Games, High-level Regular Games, Regular Board Games, and Game Description
Language. The language server supports only the first one, but we provide basic
features for all of them.

Figure 3.1: Website view

For syntax highlighting we use Monarch10, which allows us to define syntax
coloring in declarative style. It is not as precise as semantic highlighting but still
improves the readability of the code, without requiring any interaction with the
language server.

Initially, the editor field contains a code from one of the prepared samples, which
can be switched at any point. Changing the code sample is adequate for closing a
file and opening a new one.

The right part of the website presents the view of the results of transforming
the code on the left by the interpreter. Depending on the chosen option, users can
see an automaton representing the game, AST in JSON format, or run benchmarks
testing their game.

It is also possible to see the results of translating code between the three sup-
ported languages. The right view then contains an editor working in read-only mode,
connected to the same language server as the main editor. This part was done outside
of the scope of this work.

10https://microsoft.github.io/monaco-editor/monarch.html

https://microsoft.github.io/monaco-editor/monarch.html

Chapter 4

Language server

Implementing the language server was the most important part of the work, but
to do it, we had to extend parts of the Regular Games interpreter for LSP needs.
Developers’ code is seldom free of errors.

Previous RG parser would fail on the missing semicolon and not provide any
information besides a single syntax error. To make it suitable for the language server,
we had to rewrite it with the ability for partial parsing and error recovery[17, 18].
This would allow it to continue parsing after encountering an issue and report mul-
tiple diagnostics at once, which streamlines the development and debugging process.

Another characteristic of a desired parser is keeping track of token positions and
creating AST enriched by this information. All navigation features of LSP must be
able to find the definition position of every symbol easily. Error recovery requires
one more essential ability – creating syntax trees that include erroneous nodes[19].
Those trees will not be used for compiling but should be as precise as possible to
provide accurate semantic information about the code.

4.1 Parsing

The parser is written with nom, a parser combinator library. This type of parser
is characterized by concise code and a direct representation of the grammar of the
language, as seen in Listing 4.1. It makes it easy to write and reason about[20, 21].

17

18 CHAPTER 4. LANGUAGE SERVER

fn typedef(input: Input) −> Result<Option<Typedef<Identifier>>> {
with_semicolon(tag("type"),

expect(separated_pair(preceded_opt_id("typedef"), expect_preceded_tag("="), type_),
"type <identifier> = <type>;",

),
)(input)

}

Listing 4.1: Example parser written with nom

On the other hand, combinatorial parsers usually do not provide as good error
recovery as handwritten ones. We decided to use a mixed approach: we enriched
the previous combinatorial parser with error recovery methods, written in a more
by-hand manner (Listing 4.2).

fn edge_name(input: &str) −> Result<EdgeName<&str>> {
context("edge_name", into(many1(separated(edge_name_part))))(input)

}

fn edge_name(input: Input) −> Result<EdgeName<Identifier>> {
let (input, first) = expect(edge_name_part, "edge name")(input)?;
if let Some(name) = first {

let (input, rest) = many0(preceded_whitespace(edge_name_part))(input)?;
let mut parts = vec![name];
parts.extend(rest);
Ok((input, parts.into ()))

} else {
let identifier = Identifier::none(Span::at(&input));
Ok((input, vec![EdgeNamePart::Literal { identifier }].into()))

}
}

Listing 4.2: Comparison of combinatorial parser and parser with error recovery

Most of the error handling takes place in the expect (Listing 4.3) method. It
takes a parser function, applies it to an input, and in case of a failure, reports the
encountered error. Inner parser could expect a single character but also a whole
expression or statement. Commonly used is also expect_id method (Listing 4.4),
which parses an identifier (with optional preceded whitespace). If the identifier is
missing, it creates an Identifier::none node in its place.

4.2. COLLECTING SEMANTIC INFORMATION 19

fn expect<T>(
parser: Input −> Result<T>,
error_msg: &str,

) −> Input −> Result<Option<T>> {
move |input| {

let error_pos = Span::at(&input);
match parser(input) {

Ok((remaining, out)) => Ok((remaining, Some(out))),
Err(input) => {

let err = Error(error_pos, "expected: " + error_msg);
input.extra.report_error(err);
Ok((input, None))

}
}

}
}

Listing 4.3: expect method

fn expected_id(context: &str) −> Input −> Result<Identifier> {
move |input| {

let start = Position(&input);
expect(preceded_whitespace(identifier), context + ": identifier ")(input)

.map(|(input, res)| {
if let Some(res) = res {

(input, res)
} else {

let span = start.with_end(&input);
(input, Identifier ::none(span))

}
})

}
}

Listing 4.4: expected_id method

The input type seen in examples uses LocatedSpan from nom-locate crate. It
extends the basic string by keeping track of the position in the source code. It is
also enhanced further to store encountered errors.

4.2 Collecting semantic information

Given an abstract syntax tree, the task is to gather all instances of each symbol
within the source file and divide them into definitions and references. A symbol can
be a variable, a type, a typemember, an edge identifier, a label, or a constant. We
store this information about every symbol as Flag (Listing 4.5). First, we traverse
the AST and collect all definitions. This process is mostly simple, except for labels.

20 CHAPTER 4. LANGUAGE SERVER

struct Symbol {
flag : Flag,
id : String,
owners: Option<Vec<usize>>,
position : Span,

}

Listing 4.5: Symbol struct

In RG, edges form a graph, and labels are shared between neighboring nodes.
For example in Listing 4.6, every occurrence of p refers to the same symbol. We
solve this by recreating the graph described by the source code and from it calculate
which edges share given label. To differentiate identical labels at a later stage, we
maintain within the owners field a collection of edges to which they are linked.

move, selectPos: player = PlayerOrKeeper(turnPlayer);
selectPos , selectedPos(p:Position): $ p;
selectedPos(p:Position), setPos(p:Position): p != Position(null);
setPos(p:Position), setFinished: position = Position(p);

Listing 4.6: Passing label between edges

Regular Games language also has several built-in types and variables. Users
can not navigate to their definitions or see their types because we do not have access
to the syntax trees containing their declarations. We still see them in completions
and can list all their usages. Users can override any of these symbols, then the
corresponding built-in is replaced and all LSP features are enabled for it.

Then the AST is traversed again, collecting all occurrences of every symbol. To
save memory, only the position and unique symbol identifier are stored for each oc-
currence. If an unrecognized symbol is encountered during this process, a diagnostic
about it is forwarded to the user together with parsing errors.

Occurrences together with symbols create a SymbolTable (Listing 4.7) data
structure, that is later continually used by the language server.

struct Occurrence {
position : Span,
symbol: Option<usize>,

}

struct SymbolTable {
occurrences: Vec<Occurrence>,
symbols: Vec<Symbol>,

}

Listing 4.7: Structures for storing semantic data

4.3. LANGUAGE SERVER 21

4.3 Language server

The Language server is built using tower-lsp, which allows us to focus on defining
LSP endpoints without worrying about low-level implementation details. It works
completely asynchronously and can resolve multiple requests at the same time. It
uses a map of Document structs, that store all the required data about source files:
AST, SymbolTable, and the code itself.

For the initialize request that begins the connection with the client, it re-
sponds with the set of capabilities it provides. They define which endpoints are
implemented, what kind of result to expect from them, but also how should be car-
ried out the synchronization on change in the document. Upon opening a new file or
changing anything in the code, respectively didOpen and didChange notifications are
received. They result in parsing the code, building a SymbolTable, and publishing
diagnostics back to the client.

Most implementations of LSP also trigger compilation here, to inform the user
about mismatched types or unresolved imports, but doing it on every keystroke
can be very computation-heavy. Because of this, language servers like Metals took a
different approach, and even though they parse the file on every change, a compilation
process is run only after saving the file.

4.3.1 Goto definition

The goto definition feature allows users to navigate through their codebase by
jumping from symbol reference to its definition. Its implementation is fairly simple,
as shown in Listing 4.8. First, the server searches for symbol occurrence at the cursor
position then tries to get its definition and maps the result to the LSP data type.
Although simple, it is one of the most commonly used functions of LSP.

fn definitions (
uri : &Url,
position : &Position,
symbol_table: &SymbolTable,

) −> Option<GotoDefinitionResponse> {
// We map a LSP position to an AST position.
let rg_position = position.to_rg();
// Gets symbol at a given position .
let enclosing_symbol = symbol_table.get_symbol_at(&rg_position)?;
// We make sure that the symbol has definition position .
let symbol_position = enclosing_symbol.safe_pos()?;
// Maps the result position to an LSP location.
let location = symbol_position.to_location(uri);
Some(GotoDefinitionResponse::Scalar(location))

}

Listing 4.8: Goto definition function

22 CHAPTER 4. LANGUAGE SERVER

4.3.2 Show references

Connected to the previous method, show references allows developers to navigate
from a variable definition to all its usages. Together they provide a way to effortlessly
explore the structure of the code. Both these features work workspace-wide, which
means they can navigate to other files, but since Regular Games does not support
multi-file projects, this possibility is not utilized.

Implementation of this function is also simple – we need to find the symbol under
the current cursor position, then we collect all its occurrences from the SymbolTable
and filter out the occurrence in the definition.

For more complex languages that support importing functions and classes from
other modules, implementation of this method can be much more complicated. It’s
almost impossible to traverse the whole workspace of every request in search of
connected occurrences. That’s why other language servers implement indexes, using
data structures like trie that allow one to easily find in which files appear references
to a given symbol.

4.3.3 Document highlight

This feature works alike show references, but only in the scope of a single file. Its
implementation is also similar, but it doesn’t exclude definition occurrence. Because
this function doesn’t look into other files, it is much faster and be used to quickly
identify all usages of a variable.

4.3.4 Document symbols

Document symbols request awaits the list of all symbols defined in the source file. It
allows developers to quickly navigate to them, without needing to find its occurrence
first, like in goto definition. Based on Flag field, we enriched returned information
with SymbolKind, which helps users resolve between identifiers of variabless, types,
and edges.

4.3.5 Rename

The rename command is significantly more complex than those mentioned previously.
It consists of two parts. The first, prepare rename, checks if an identifier on the
current position can be renamed. If it succeeds, a text field with a placeholder value
is displayed and awaits entering the new name. The function prepare rename can
fail if the underlying identifier refers to a built-in symbol.

Afterwards, a rename request is sent from the client. It contains the span of an
old identifier and a new text to be inserted. It is worth noting, that this command

4.3. LANGUAGE SERVER 23

can be run on both definition and reference spans. Then, just like in document
highlight, all occurrences of the symbols are collected, and each of them is used to
create a TextEdit that replaces text under its position (Listing 4.9).

fn rename(
uri : &Url,
position : &Position,
symbol_table: &SymbolTable,
new_name: String,

) −> Option<WorkspaceEdit> {
let symbol = symbol_table.get_symbol_at(&position.to_rg())?;
let sym_idx = symbol_table.sym_idx(symbol)?;
symbol.safe_pos().map(|_| {

let changes = symbol_table.all_symbol_occurences(sym_idx).iter()
.map(|occ| TextEdit {range: occ.pos.to_lsp(), new_text: new_name.clone()}).collect();

WorkspaceEdit([(uri.clone(), changes)])
})

}

Listing 4.9: Rename command

Similarly to goto definition and show references, this method works on the
whole codebase and can apply edits in every file. In object-oriented languages like
Java, if rename is called on a class identifier it also changes the name of the file
containing its definition, because those two are closely connected.

4.3.6 Hover

The hover feature allows users to get instant information about a symbol. It is
especially useful when trying to comprehend already written code. With it, the
developer does not have to navigate to a variable definition to see its type.

To provide that, the language server first tries to get the symbol the user hovers
over. SymbolTable does not store information about the variable type, so we need
to find the statements enclosing this symbol definition in the AST and extract it from
there (Listing 4.10).

fn hover(
position : &Position,
symbol_table: &SymbolTable,
game: &Game<Identifier>,

) −> Option<Hover> {
let symbol = symbol_table.get_symbol_at(&position.to_rg())?;
let span = symbol.span();
let type_ = game.stat_enclosing_span(span).and_then(|stat| stat.symbol_type(symbol));
let contents = hover_signature(symbol, type_);
Some(Hover {contents, range: Some(span.to_lsp())})

}

Listing 4.10: Hover function

24 CHAPTER 4. LANGUAGE SERVER

4.3.7 Semantic highlighting

One of the most interesting LSP features is semantic highlighting. Most grammar-
based syntax highlighters are not able to recognize if a given identifier is a constant,
a mutable variable, or a parameter. If the user doesn’t follow naming conventions,
syntax coloring might be incorrect and misleading.

Semantic highlighting extends the capabilities of other coloring tools by tak-
ing into account semantic information. Thanks to this it can distinguish identifiers
based on symbols Flag, which results in more precise decorations. For every word
that should be colorized, it creates a Token, which consists of five integers: its type
and modifier that are later resolved by the client, length, and distance in columns
and lines from the previous token.

To provide them, it uses both the AST and SymbolTable. Using the former, it
creates a Token for every keyword and pragma in the file. The latter helps to collect
Tokens for all symbol occurrences. It assigns each of them a token type referring to
the SemanticTokensLegend, that is passed to the client among capabilities during
the initialization process. After collecting all the Tokens, they are sorted based on
position and for every two of them, the distance between them is calculated.

Although in Listing 4.11 they are represented as a vector of SemanticToken
structs, the low-level API of Language Server Protocol flattens the result to an array
of integers.

fn semantic_tokens_full(document: &Document) −> Vec<SemanticToken> {
let keywords = ast_tokens(&document.game);
let symbols = symbol_table_tokens(&document.symbol_table);
let mut tokens = [&keywords[..], &symbols[..]].concat();
tokens.sort_by_key(|t| t.pos);
let mut delta = Delta::default();
tokens.into_iter()

.map(|token| {
delta .step(&token.pos);
SemanticToken {

delta_line: delta . line ,
delta_start: delta .column,
length: token.len ,
token_type: token.token_type,
token_modifiers_bitset: token.token_modifier,

}
}). collect ()

}

Listing 4.11: semantic_tokens_full method

4.3. LANGUAGE SERVER 25

4.3.8 Completion

Completions are by far the most important and useful feature of an IDE. They
accelerate coding speed, prevent typos, and reduce the burden on developers’ memory
associated with remembering all the function and variable names. Providing context-
aware completion makes writing the code much easier since they suggest only those
symbols, that can appear at a current position. For these reasons, we were especially
attentive to them in the project.

First, based on cursor position, the CompletionKind has to be recognized (List-
ing 4.12). This was a motivation for writing a precise parser with exact spans and
accurate error handling. Then, document symbols are filtered based on their Flag,
which decides if they are suitable for the calculated CompletionKind. Every valid
completion that encodes a constant or variable is annotated with its type from the
AST. This helps developers decide which suggestion to apply.

fn completion_items(
pos: Position,
game: &Game<Identifier>,
symbol_table: &SymbolTable,

) −> Vec<CompletionItem> {
let completion_kind = game.stat_enclosing_position(&pos)

.map(|stat| stat .completion_kind(&pos)).unwrap_or(CompletionKind::Toplevel);
let mut items = get_symbols(symbol_table, &completion_kind.predicate())

.map(|sym| completion_item(game, sym));
if CompletionKind::Toplevel = completion_kind {

items.extend(keyword_completion());
}
items

}

Listing 4.12: completions method

A related completion_item_resolve endpoint is called after changing an item
in the suggestions list, to provide additional information about it. The reason for
resolving this lazily is that getting documentation for a symbol is often computation-
heavy. However, it was not implemented in this project.

4.3.9 Code actions

Code actions can be split into multiple categories, including refactor, extract,
inline, and quick-fix. Which functions are implemented depends on the language
needs. Every codeaction category is displayed differently in the IDE’s UI

The response for codeaction request contains all actions that can be performed
on the current position. They can be implemented as commands, this way only after
one of them is applied its effect is calculated.

26 CHAPTER 4. LANGUAGE SERVER

For the Regular Games language, we have implemented one refactor code
action, namely Split edge. Running it when the cursor is over an edge will result
in splitting the edge into two and adding an intermediate node between them. The
exact edit depends on which part of the edge the cursor is on.

4.4 Testing

For testing LSP features, we need to simulate the behavior of the editor. Each
test is constructed as a fragment of code which includes a cursor at some position.
Before parsing the test, we extract the cursor position from it and use it as a request
parameter. Example in Listing 4.13 tests which completions are allowed at a given
position. Here ˆ character indicates the cursor.

fn const_def() {
completion_kind("const ^",CompletionKind::None);
completion_kind("const foo: ^",CompletionKind::Type);
completion_kind("const foo: ^ = 1;",CompletionKind::Type);
completion_kind("const foo: Bar = ^ ",CompletionKind::Value);
completion_kind("const foo: Bar = {:null, ^}",CompletionKind::Value);
completion_kind("const foo: Bar = {:null, e1:^}", CompletionKind::Value);

}

Listing 4.13: Testing completions

Chapter 5

User Manual

In this chapter, we show how to use the editor and trigger LSP features. The
project is available at https://radekmie.dev/rg/, although the source code is not
yet public.

• Document Highlight

After clicking on a variable, or an edge name, all of its occurrences become
highlighted. Users can then navigate between the highlights using F7 and
Shift + F7.

Figure 5.1: Document highlight

• Document Symbols

To trigger document symbols, users need to press Cmd + Shift + O. They can
then filter and navigate a list of symbols defined in the source.

Figure 5.2: Document symbols

27

https://radekmie.dev/rg/

28 CHAPTER 5. USER MANUAL

• Completions

Completion requests are sent automatically while typing, but can also be forced
with Cmd + Space.

(a) Type completions (b) Expression completions

Figure 5.3: Completions

• Hover

Hovering over a variable displays a tooltip with information about its type.

Figure 5.4: Hover

• Rename

To rename a symbol, press the right mouse button on it and select Rename
Symbol from the menu. Alternatively, users can press F2 while having the
cursor over a symbol. Then, a text field will appear and await inserting a new
name.

(a) Before rename (b) Inserting new name (c) Renaming result

Figure 5.5: Rename process

• Diagnostics

Diagnostics are published automatically and displayed as squiggles. Users can
hover over them to read related error messages.

Figure 5.6: Diagnostics

29

• Navigation

To go to a symbol definition, use Cmd and click on a variable occurrence. Doing
the same on the definition position will show all references to a symbol. Both
commands can also be run from the menu after pressing the right mouse button
on a symbol.

Figure 5.7: Show references

• Code actions

To run Split edge code action, click on the edge and press Cmd + . (dot).
Depending on the cursor position inside the edge, the result of the code action
will differ.

(a) Selection menu (b) Split edge result

Figure 5.8: Code actions

Chapter 6

Summary and Further
Development

6.1 Conclusion

This work presents an implementation of a custom IDE that runs entirely in a
browser. First, we have introduced the Language Server Protocol and its associ-
ated features, showcasing its significance in modern software development. We have
explained the requirements for writing a language server, specifically a parser with
an error recovery mechanism, and a tool for extracting semantic data from code.
We have presented solutions applied in a language server for the Regular Games
language and compared them to approaches chosen in other projects.

Instead of using the Tree-sitter library for writing an incremental, fault-tolerant
parser, we opted to refactor the existing RG parser to align it with the requirements
of a language server. We have shown how to collect semantic information about
symbols in a source file and use this data for various language server features.

This work also offers insight into how to create a fully functional Integrated
Development Environment within a web platform, incorporating both a code editor
and a language server. It shows how to set up a language client and describes the
process of communicating with a language server.

Finally, we have presented the implementation of supported LSP functions. Ad-
ditionally, a user manual has been provided, offering instructions on how to utilize
these features.

31

32 CHAPTER 6. SUMMARY AND FURTHER DEVELOPMENT

6.2 Further work

This project can be extended in multiple ways. We could improve the support for
Regular Games by adding more interaction between the language server and the
interpreter. Compiling code on change in the editor could provide us with more
error reports. Thanks to adding spans to AST nodes, we could enrich type-checker
errors with positions.

The interpreter could also inform the language server about unused variables and
redundant edges. These diagnostics would then be transformed into code actions and
displayed in the editor as a warning with a way to fix them automatically.

Another improvement would be to add support for the three other languages:
High-level Regular Games, Regular Boardgames, and GDL. Since parsers of two of
them are not written in Rust, the biggest part of the work would be to rewrite them.
Then, we would need to create a way to extract semantic data from their abstract
syntax trees, preferably matching the Symbol and SymbolTable structs. Having
that, adding LSP features for them should be easy, since the implementation would
be shared between all languages.

Bibliography

[1] Stefan Marr, Humphrey Burchell, and Fabio Niephaus. Execution vs. Parse-
Based Language Servers: Tradeoffs and Opportunities for Language-Agnostic
Tooling for Dynamic Languages. In Proceedings of the 18th ACM SIGPLAN
International Symposium on Dynamic Languages, page 1–14. Association for
Computing Machinery, 2022.

[2] Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian König,
Kolya Opahle, Nico Scordialo, and Robert Hirschfeld. Example-Based Live
Programming for Everyone: Building Language-Agnostic Tools for Live Pro-
gramming with LSP and GraalVM. In Proceedings of the 2020 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, page 1–17. Association for Computing Machinery,
2020.

[3] Djonathan Barros, Sven Peldszus, Wesley K. G. Assunção, and Thorsten Berger.
Editing Support for Software Languages: Implementation Practices in Language
Server Protocols. In Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems, page 232–243. Association for Com-
puting Machinery, 2022.

[4] Roberto Rodriguez-Echeverria, Javier Luis Cánovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. Towards a Language Server Protocol Infrastructure for
Graphical Modeling. In Proceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, page 370–380.
Association for Computing Machinery, 2018.

[5] Frédéric Bour, Thomas Refis, and Gabriel Scherer. Merlin: a language server
for OCaml (experience report). Proceedings of the ACM on Programming Lan-
guages, page 1–15, 2018.

[6] Tom Beckmann, Patrick Rein, Toni Mattis, and Robert Hirschfeld. Partial
Parsing for Structured Editors. In Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering, page 110–120. As-
sociation for Computing Machinery, 2022.

33

34 BIBLIOGRAPHY

[7] Jakub Kowalski, Jakub Sutowicz, and Marek Szykuła. Regular Boardgames.
Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[8] M. Genesereth and M. Thielscher. General Game Playing. Morgan & Claypool,
2014.

[9] Michael Genesereth and Nathaniel Love. General Game Playing: Game De-
scription Language Specification. Technical report, Stanford Logic Group, 2006.

[10] Éric Piette, Dennis J. N. J. Soemers, Matthew Stephenson, Chiara F. Sironi,
Mark H. M. Winands, and Cameron Browne. Ludii - The Ludemic General
Game System. CoRR, 2019.

[11] Fabien Coulon, Alex Auvolat, Benoit Combemale, Yérom-David Bromberg,
François Taïani, Olivier Barais, and Noël Plouzeau. Modular and Distributed
IDE. In Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, page 270–282. Association for Computing Ma-
chinery, 2020.

[12] Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff, Dan Gohman,
Luke Wagner, Alon Zakai, J. F. Bastien, and Michael Holman. Bringing the Web
up to Speed with WebAssembly. Commun. ACM, page 107–115, 2018.

[13] Tim A. Wagner. Practical Algorithms for Incremental Software Development
Environments. PhD thesis, EECS Department, University of California, Berke-
ley, 1998.

[14] Tim A. Wagner and Susan L. Graham. Efficient and Flexible Incremental Pars-
ing. ACM Trans. Program. Lang. Syst., page 980–1013, 1998.

[15] Eric R. Van Wyk and August C. Schwerdfeger. Context-Aware Scanning for
Parsing Extensible Languages. In Proceedings of the 6th International Con-
ference on Generative Programming and Component Engineering, page 63–72.
Association for Computing Machinery, 2007.

[16] Eugene Burmako. SemanticDB: A Common Data Model for Scala Developer
Tools (Invited Talk). In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Meta-Programming Techniques and Reflection, page 2. Association
for Computing Machinery, 2018.

[17] François Pottier. Reachability and Error Diagnosis in LR(1) Parsers. In Pro-
ceedings of the 25th International Conference on Compiler Construction, page
88–98. Association for Computing Machinery, 2016.

[18] Michael G. Burke and Gerald A. Fisher. A Practical Method for LR and LL
Syntactic Error Diagnosis and Recovery. ACM Trans. Program. Lang. Syst.,
page 164–197, 1987.

BIBLIOGRAPHY 35

[19] Sérgio Medeiros and Fabio Mascarenhas. Syntax Error Recovery in Parsing
Expression Grammars. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, page 1195–1202. Association for Computing Machinery,
2018.

[20] Nils Anders Danielsson. Total Parser Combinators. SIGPLAN Not., page
285–296, 2010.

[21] Anastasia Izmaylova, Ali Afroozeh, and Tijs van der Storm. Practical, General
Parser Combinators. In Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, page 1–12. Association for
Computing Machinery, 2016.

	Introduction
	Introducing Language Server Protocol
	Language server
	Regular Games Language

	Related work
	Code editors
	Tree-sitter
	Advanced language server implementantations

	Implementation
	Methodology
	Architecture
	Code editor

	Language server
	Parsing
	Collecting semantic information
	Language server
	Goto definition
	Show references
	Document highlight
	Document symbols
	Rename
	Hover
	Semantic highlighting
	Completion
	Code actions

	Testing

	User Manual
	Summary and Further Development
	Conclusion
	Further work

	Bibliography

